Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase.

نویسندگان

  • Takahiro Hayashi
  • Kyle D Miner
  • Natasha Yeung
  • Ying-Wu Lin
  • Yi Lu
  • Pierre Moënne-Loccoz
چکیده

Denitrifying NO reductases are evolutionarily related to the superfamily of heme--copper terminal oxidases. These transmembrane protein complexes utilize a heme-nonheme diiron center to reduce two NO molecules to N(2)O. To understand this reaction, the diiron site has been modeled using sperm whale myoglobin as a scaffold and mutating distal residues Leu-29 and Phe-43 to histidines and Val-68 to a glutamic acid to create a nonheme Fe(B) site. The impact of incorporation of metal ions at this engineered site on the reaction of the ferrous heme with one NO was examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. UV--vis absorption and resonance Raman spectra demonstrate that the first NO molecule binds to the ferrous heme, but while the apoproteins and Cu(I)- or Zn(II)-loaded proteins show characteristic EPR signatures of S = 1/2 six-coordinate heme {FeNO}(7) species that can be observed at liquid nitrogen temperature, the Fe(II)-loaded proteins are EPR silent at ≥30 K. Vibrational modes from the heme [Fe-N-O] unit are identified in the RR and FTIR spectra using (15)NO and (15)N(18)O. The apo and Cu(I)-bound proteins exhibit ν(FeNO) and ν(NO) that are only marginally distinct from those reported for native myoglobin. However, binding of Fe(II) at the Fe(B) site shifts the heme ν(FeNO) by 17 cm(-1) and the ν(NO) by -50 cm(-1) to 1549 cm(-1). This low ν(NO) is without precedent for a six-coordinate heme {FeNO}(7) species and suggests that the NO group adopts a strong nitroxyl character stabilized by electrostatic interaction with the nearby nonheme Fe(II). Detection of a similarly low ν(NO) in the Zn(II)-loaded protein supports this interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Production of Nitrous Oxide by the Heme/Nonheme Diiron Center of Engineered Myoglobins (FeBMbs) Proceeds through a trans-Iron-Nitrosyl Dimer

Denitrifying NO reductases are transmembrane protein complexes that are evolutionarily related to heme/copper terminal oxidases. They utilize a heme/nonheme diiron center to reduce two NO molecules to N2O. Engineering a nonheme Fe(B) site within the heme distal pocket of sperm whale myoglobin has offered well-defined diiron clusters for the investigation of the mechanism of NO reduction in thes...

متن کامل

Introducing a 2-His-1-Glu nonheme iron center into myoglobin confers nitric oxide reductase activity.

A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe(B)Mb(-His)). A high resolution (1.65 A) crystal structure of Cu(II)-CN(-)-Fe(B)Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successf...

متن کامل

The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active-Site Intermediates and Products

The unique active site of flavo-diiron proteins (FDPs) consists of a nonheme diiron-carboxylate site proximal to a flavin mononucleotide (FMN) cofactor. FDPs serve as the terminal components for reductive scavenging of dioxygen or nitric oxide to combat oxidative or nitrosative stress in bacteria, archaea, and some protozoan parasites. Nitric oxide is reduced to nitrous oxide by the four-electr...

متن کامل

Characterization of the bridged hyponitrite complex {[Fe(OEP)](2)(μ-N(2)O(2))}: reactivity of hyponitrite complexes and biological relevance.

The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) represents a paradigm of how NO can be detoxified anaerobically in cells. In order to elucidate the mechanism of this enzyme, model complexes provide a convenient means to assess potential reaction intermediates. In particular, there have been many proposed mechanisms that invoke the formation of a hyponitrite bridge betw...

متن کامل

Functional mimic of dioxygen-activating centers in non-heme diiron enzymes: mechanistic implications of paramagnetic intermediates in the reactions between diiron(II) complexes and dioxygen.

Two tetracarboxylate diiron(II) complexes, [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(C(5)H(5)N)(2)] (1a) and [Fe(2)(mu-O(2)CAr(Tol))(4)(4-(t)BuC(5)H(4)N)(2)] (2a), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate, react with O(2) in CH(2)Cl(2) at -78 degrees C to afford dark green intermediates 1b (lambda(max) congruent with 660 nm; epsilon = 1600 M(-1) cm(-1)) and 2b (lambda(max) congruent wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 50 26  شماره 

صفحات  -

تاریخ انتشار 2011